Hoving & Robison, 2012 Proceedings of the Royal Society B

Proxies of particle flux: from the modern ocean to the ²³¹Pa_{st} christopher T hayes, university of southern mississippi

Motivation: Quantifying the deep ocean receptacle

- Important to quantify:
 - Carbon storage
 - Nutrient/trace metal availability

• Radionuclides as sediment traps for the past

Nuclide Pairs Tracing Particle Export

Bourdon et al., 2003 Reviews in Mineralogy and Geochemistry

Rutgers van der Loeff & Geibert, 2008 Radioactivity in the Environment

Radionuclide Deficits Due to Sinking Particles

data from: Owens et al., 2015 DSR-II; Charette et al., 2015 Mar Chem; Maiti et al., 2015 Mar Chem; Rigaud et al., 2015 DSR-II; Hayes et al., 2015a+b, DSR-II + Mar Chem

Converting from Radionuclide to Elemental Flux

Multi-method particle flux comparison at BATS: 1. Biogenic Elements

Hayes et al., 2019 *Global Biogeochemical Cycles* OFP from Huang & Conte, 2009 *GCA*; BATS ²³⁴Th time-series: Sweeney et al, 2003 *DSR-II* + Buesseler et al., 2008 *DSR-II* Thorium-based carbon fluxes are consistent with and extend knowledge of deep sea sediment traps

Hayes et al., 2019 Global Biogeochemical Cycles; Honjo et al., 2008 Progress in Oceanography

Implications

- ²³⁰Th can be used to reconstruct preserved particle rain to the seafloor over the past ~400,000 years for any element or component of the sediments
 - Caveats relate to grain-size and circulation effects, uncertainty generally <30%
- Many applications for reconstructing particle rain of biological components, mineral components, trace metals...
- Can we reconstruct the global sinking flux of ²³¹Pa to demonstrate the nature of its lateral transport?
 - Use particulate ²³⁰Th to get deep sinking flux
 - Multiply by particulate ²³¹Pa/²³⁰Th to get sinking particulate ²³¹Pa flux
 - Sinking flux divided by its production rate is a measure of how much removed to the seafloor in that location

%Pa sinking [%] @ depth=3000.00

Hayes et al., for this meeting; Hayes et al., 2015 Marine Chemistry; Pavia et al., 2018 Marine Chemistry; Henderson database: Venchiarutti et al., 2011 Deep Sea Research II; Moran et al, 2002 Earth and Planetary Science Letters; Rutgers van der Loeff et al., 1993 Deep Sea Research I

The Atlantic Pa Regime: Southern Ocean scavenging

The Pacific Pa Regime: boundary scavenging

Anderson et al., 1983 Earth and Planetary Science Letters; Yang et al., 1986 Geochimica et Cosmochimica Acta; Bacon, 1988 Philosophical Transactions of the Royal Society A

The Pacific Pa Regime: biogeographic province scavenging

 Excess Pa burial occurs across provinces that support higher export/ opal productivity

Hayes et al., 2014 Earth and Planetary Science Letters

C.T. Hayes et al. / Earth and Planetary Science Letters 391 (2014) 307-318

Opal has the best correlations...

Biogeographic provinces

Provinces have distinct phytoplankton groups

Hypothesis is that this is the source of contrast in particle flux and particle composition

45°E 90°E 135°E 100°E 135°W 90°W 45°W 0°E

Kostadinov et al., 2016 Ocean Sci.

The Pacific Pa Regime: biogeographic province scavenging

 Let's use the provinces to extrapolate the unknown areas and fill in the basin budget

Hayes et al., 2014 Earth and Planetary Science Letters

The Pacific Pa Regime: biogeographic province scavenging

- Assume flux of ²³⁰Th is equal everywhere
- We can account for ~93 ± 3% of the Pa production with observed surface sediments
- The Pacific Pa budget is in balance

Hayes et al., 2014 Earth and Planetary Science Letters

The Atlantic Pa Regime:

Hayes et al., for this meeting; Henderson compilation; also Bradtmiller et al., 2014 Nat. Comm.

The Atlantic Pa Regime:

- About 80±5% of Atlantic Pa production is accounted for in surface sediments (missing Pa sinks?)
- The Pa deficit in the South Atlantic is larger than the North (cf. Deng et al., 2014)
- Is Pa/Th distribution is a combination of transport and regional contrast in particle flux?
 - How to disentangle?

Hayes et al., for this meeting

Some other ideas for the working groups...

- What is the true geographic representativeness of your core?
- The ocean is divided into particle flux regimes, largely due to fundamental productivity patterns, availability of nutrients, light & physical fronts
- Are there other modern distributions we should take advantage of to interpolate sparse sites?
 - Dust deposition regimes?
 - Sediment composition regimes?
 - Hydrothermal regimes?