Neodymium Isotopes as Proxies for Past Ocean Circulation

Progress & Challenges

Katharina Pahnke

Max Planck Research Group for Marine Isotope Geochemistry Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg & Max Planck Institute for Marine Microbiology, Bremen

Data: Brian Duggan, Tina van de Flierdt, Martin Frank, Steve L Goldstein, Alison Hartman. Catherine Jeandel. Myriam Lambelet, Katharina Pahnke. Howie Scher, Torben Stichel, Moritz Zieringer **Graphics: Reiner Schlitzer**

Outline

- 1. State of the Art
 - Archives & extraction methods
 - Recent scientific advances from Nd isotope records & GEOTRACES studies
- 2. Challenges & Open Questions
 - Overprints of original provenance signal of water masses
 - Local, regional, and/or global overprints?
- 3. Perspectives

How can future GEOTRACES studies address challenges & open questions?

εNd as tracer for water mass source and circulation pathway:

- seawater εNd carries source information of water mass
- ► spatial distribution suggests residence time ≤ ocean overturning
- no isotope fractionation during incorporation into archives
- reliable archives & extraction methods available

Cean Data View - -10 - -12 - -14

- **boundary exchange** at continental/island margins & seafloor (εNd)
- particle-seawater interactions in the water column (εNd, [Nd])
- benthic flux of REE (εNd, [Nd])

1. State of the Art - current use of Nd isotopes as paleocirculation proxy

Proven εNd archives of paleo-seawater:

Archive:

foraminifera Fe-Mn-oxide coatings

Extraction method:

manual (without cleaning) or weak leach of bulk sed.

fish teeth / debris

manual

manual (with chemical cleaning)

deep sea corals

Application comment:

high temporal resolution in <u>carbonate-rich</u> sediments

medium to low temporal resolution, no CaCO₃ required, not ubiquitous

absolute U-Th dating, shallow depths, very high temporal resolution, no continuous records, can change habitat

Global observations (from GEOTRACES):

- At ≥1500 m: εNd dominantly affected by water mass mixing
- Continental influence mainly within 1000 km of margin

• no correlation of ϵNd and 1/[Nd] \rightarrow [Nd] non-conservative

Tachikawa et al., Chem.Geol. (2017)₆

Global GEOTRACES Observations:

• \geq 75 % conservative behavior of Nd

South Atlantic >1000m

1000

0

2000 3000 Section Distance [km]

10

Global observations (from GEOTRACES):

Predicted vs. observed seawater εNd:

color shading = predicted εNd colored dots = observed ϵ Nd

Tachikawa et al., Chem.Geol. (2017) ₈

Atlantic:

NADW Production during LGM

GNADW also suggested by: Bradtmiller et al., Nat. Comm. (2014) using Th/Pa isotopes Keigwin & Swift, PNAS (2017) using d13C Pöppelmann et. al., Paleoc. (2016) using eNd

Howe et al., Nat. Comm. (2016)

Atlantic:

South Atlantic:

- AAIW: εNd +/- stable from LGM to Holocene (except for change in early Holocene)
- Deep Water: εNd more <u>radiogenic</u> during LGM
- ▶ No increased Pacific contribution to AAIW?

Howe et al., Paleoc. (2016) 10

Deep Southern Ocean:

Deep Southern Ocean past 20 ky:

• consistent timing and direction of εNd changes

Basak et al., Science (2018); Skinner et al., Geol. (2013); Piotrowski et al., EPSL (2012) 11

Deep South Pacific:

Zonal section through the South Pacific

RSBW: Ross Sea Bottom Water; PDW: Pacific Deep Water CDW: Circumpolar Deep Water

Homogeneous εNd of -8:

• well-mixed deep waters

Basak et al., Science (2018) 12

Deep South Pacific:

Zonal section through the South Pacific

CDW: Circumpolar Deep Water

Different εNd above/below 4000 m:

- increased northward extent of RSBW
- stable deep-abyssal water column

Basak et al., Science (2018) 13

- **boundary exchange** at continental/island margins & seafloor (εNd)
- particle-seawater interactions in the water column (εNd, [Nd])
- benthic flux of REE (εNd, [Nd])

2. Challenges & Open Questions - Boundary Exchange

substantial ENd modification: **Pacific:**

> surface/subsurface: volcanic islands, boundary exchange & input **LCDW**: Samoan Passage (+4 εNd), Philippine Sea/Mariana Basin (+ 1 εNd) **AAIW**: volcanic islands, hydrothermal particle exchange?

ε_{Nd} 150-0 AAIW **W** -1 -2 -3 -4 -5 View Data -6 cean ŏ 📑 10°S EQ

Atlantic GA03

North Atlantic TAG hydrothermal plume:

- Nd removal
- εNd modification towards radiogenic values

Stichel et al., Frontiers (2018) 16

2. Challenges & Open Questions - Particle-Seawater Exchange

Short-term dissolved eNd and [Nd] changes down to 3000 m water depth due to surface particle input

Also during H-events in North Atlantic (Roberts & Piotrowski, 2015)

Benthic flux:

NE Atlantic >47°N (north of Dreizack)

Data: Blaser et al., GCA (accepted), Roberts & Piotrowski, EPSL (2015). Howe et al., EPSL (2016)

Deep NE Atlantic >47°N:

- relabelling across different water masses
- stronger relabelling and greater southward extent during HE1 and HE2 (sluggish AMOC)

Blaser et al., GCA (accepted)

Deep NE Atlantic, Dreizack seamount:

- Extreme εNd range of bulk weak leachates and forams $(\epsilon Nd = -28 \text{ to } -5)$
- no indication for migration of signal up or down (sharp) boundaries to over-/underlying sediments)
- no indication for benthic flux into bottom waters at Dreizack seamount

Blaser et al., GCA (accepted)₁₉

Oregon margin:

NE Pacific, Oregon Margin:

- porewaters are **major source of REEs** to the ocean
- if extrapolated to global ocean, it can account for missing Nd flūx
- affects bottom water εNd (>2000 m upwards)
- magnitude of the benthic flux is a result of the development of reactive authigenic phases during diagenesis & depends on circulation strength

Abbott et al., GCA (2015); Abbott et al., Geology (2015); Abbot et al., EPSL (2016) 20

N Pacific:

- deep water εNd = function of exposure time to benthic flux (i.e., circulation speed)
- downcore εNd reflects circulation rate (more positive RNd = slow circulation)

• no correlation of deep water [Nd] with age

Du et al., Nat.Geo. (2018); Compilation (Pahnke); Gebbie & Huybers $(2012)_{21}$

Benthic flux?

Pacific >2000 m:

- εNd correlates with deep water age & phosphate
- [Nd] does not correlate with deep water age
 - → no indication for benthic flux on a global scale

Compilation (Pahnke) Gebbie & Huybers (2012)

West Atlantic

Local Nd input and ENd modification from benthic nepheloid layer

Lambelet et al., GCA (2016); Zheng et al., EPSL (2016); Hathorne et al., Marine Chem. (2015) 23

Benthic flux?

40

Global GEOTRACES Observations:

 no indication for benthic REE flux in Arctic and Southern Ocean?

> Basak et al., EPSL (2015); Paffrath & Pahnke, unpubl. data 24

Behrens et al., EPSL (2018)

Benthic flux?

Are paleo-records consistent with benthic flux hypothesis?

Southern Ocean-wide consistency of deep water εNd changes:

Abrupt εNd changes (corals):

eNd versus Pa/Th - Are we closer to understanding the differences?

- if eNd reflects deep water source and Th/Pa circulation speed, the records are not at odds
- lack of change from LGM through H1 calls benthic flux hypothesis into question

GEOTRACES Science Plan (2003); Ng et al., Nat.Comm. (2018); Roberts et al., Science (2010) 27

How to precede?

- Water mass circulation and mixing play important role in εNd distributions εNd will remain useful (qualitative) tracer for water mass provenance and circulation pathways non-conservative processes are increasingly used to explain inconsistencies/strong anomalies in paleo-records
- How can non-conservative processes be identified / quantified in paleo applications?
- Is benthic flux a global phenomenon and the main source of Nd to the ocean?
- Should eNd rather be used as a dynamic tracer (circulation speed/deep water exposure time to benthic flux)?

What is needed?

- Improved global coverage of observations in the water column (e.g., in Pacific, Southern Ocean) and sediment • Observations at **interfaces** (land/margin-ocean (rivers, SGD), seafloor-seawater)
- Direct **benthic flux measurements** (benthic chambers)
- Modeling studies

Thank you!

