Neodymium Isotopes as Proxies for Past Ocean Circulation

Progress & Challenges

Katharina Pahnke

Max Planck Research Group for Marine Isotope Geochemistry
Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg & Max Planck Institute for Marine Microbiology, Bremen
1. State of the Art - current use of Nd isotopes as paleocirculation proxy

Outline

1. State of the Art
 - Archives & extraction methods
 - Recent scientific advances from Nd isotope records & GEOTRACES studies

2. Challenges & Open Questions
 - Overprints of original provenance signal of water masses
 - Local, regional, and/or global overprints?

3. Perspectives
 - How can future GEOTRACES studies address challenges & open questions?
εNd as tracer for water mass source and circulation pathway:

- seawater εNd carries source information of water mass
- spatial distribution suggests residence time ≤ ocean overturning
- no isotope fractionation during incorporation into archives
- reliable archives & extraction methods available
Challenges for ϵNd as conservative water mass tracer:

- Overprints from local/regional sources
 - **boundary exchange** at continental/island margins & seafloor (ϵNd)
 - **particle-seawater interactions** in the water column (ϵNd, [Nd])
 - **benthic flux of REE** (ϵNd, [Nd])

![Boundary exchange](image)
1. State of the Art - current use of Nd isotopes as paleocirculation proxy

Proven εNd archives of paleo-seawater:

<table>
<thead>
<tr>
<th>Archive:</th>
<th>Extraction method:</th>
<th>Application comment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>foraminifera Fe-Mn-oxide coatings</td>
<td>manual (without cleaning) or weak leach of bulk sed.</td>
<td>high temporal resolution in carbonate-rich sediments</td>
</tr>
<tr>
<td>fish teeth / debris</td>
<td>manual</td>
<td>medium to low temporal resolution, no CaCO$_3$ required, not ubiquitous</td>
</tr>
<tr>
<td>deep sea corals</td>
<td>manual (with chemical cleaning)</td>
<td>absolute U-Th dating, shallow depths, very high temporal resolution, no continuous records, can change habitat</td>
</tr>
</tbody>
</table>
Global observations (from GEOTRACES):

- At ≥1500 m: εNd dominantly affected by water mass mixing
- Continental influence mainly within 1000 km of margin

- no correlation of εNd and 1/[Nd]
 ➔ [Nd] non-conservative
1. State of the Art - scientific advances from εNd

Global GEOTRACES Observations:

- $\geq 75\%$ conservative behavior of Nd

South Atlantic >1000m

NE Atlantic: NADW-depth

South Pacific: >1000m

West Pacific: >1000m (except AAIW in the South)
Global observations (from GEOTRACES):

Predicted vs. observed seawater εNd:

- offsets: equ. W & E Pacific

color shading = predicted εNd
colored dots = observed εNd

Tachikawa et al., Chem.Geol. (2017)
Atlantic:

GNADW also suggested by:
Bradtmiller et al., Nat. Comm. (2014) using Th/Pa isotopes
Keigwin & Swift, PNAS (2017) using d13C
Pöppelmann et. al., Paleoc. (2016) using eNd

Atlantic:

South Atlantic:

- AAIW: εNd +/- stable from LGM to Holocene (except for change in early Holocene)
- Deep Water: εNd more radiogenic during LGM
- No increased Pacific contribution to AAIW?
Deep Southern Ocean:

Deep Southern Ocean past 20 ky:

- consistent timing and direction of εNd changes

Basak et al., Science (2018);
Skinner et al., Geol. (2013);
Piotrowski et al., EPSL (2012)
Deep South Pacific:

Zonal section through the South Pacific

Homogeneous εNd of -8:
- well-mixed deep waters

RSBW: Ross Sea Bottom Water; PDW: Pacific Deep Water
CDW: Circumpolar Deep Water

Basak et al., Science (2018)
1. State of the Art - scientific advances from εNd

Deep South Pacific:

Zonal section through the South Pacific

Different εNd above/below 4000 m:

- increased northward extent of RSBW
- stable deep-abyssal water column

RSBW: Ross Sea Bottom Water; PDW: Pacific Deep Water
CDW: Circumpolar Deep Water

Basak et al., Science (2018)
Challenges for εNd as conservative water mass tracer:

- Overprints from local/regional sources
 - **boundary exchange** at continental/island margins & seafloor (εNd)
 - **particle-seawater interactions** in the water column (εNd, [Nd])
 - **benthic flux** of REE (εNd, [Nd])
2. Challenges & Open Questions - Boundary Exchange

Pacific: **substantial εNd modification:**

surface/subsurface: volcanic islands, boundary exchange & input

LCDW: Samoan Passage (+4 εNd), Philippine Sea/Mariana Basin (+ 1 εNd)

AAIW: volcanic islands, hydrothermal particle exchange?
2. Challenges & Open Questions - Particle-Seawater Exchange

Atlantic GA03

North Atlantic TAG hydrothermal plume:
- Nd removal
- εNd modification towards radiogenic values
2. Challenges & Open Questions - Particle-Seawater Exchange

Indian Ocean

Short-term dissolved eNd and [Nd] changes down to 3000 m water depth due to surface particle input

Also during H-events in North Atlantic (Roberts & Piotrowski, 2015)

Panama Basin

Yu et al., EPSL (2017)
Deep NE Atlantic >47°N:

- relabelling across different water masses
- stronger relabelling and greater southward extent during HE1 and HE2 (sluggish AMOC)

Data: Blaser et al., GCA (accepted), Roberts & Piotrowski, EPSL (2015), Howe et al., EPSL (2016)

Blaser et al., GCA (accepted)
Deep NE Atlantic, Dreizack seamount:

- Extreme εNd range of bulk weak leachates and forams (εNd = -28 to -5)
- no indication for migration of signal up or down (sharp boundaries to over-/underlying sediments)
- no indication for benthic flux into bottom waters at Dreizack seamount

Blaser et al., GCA (accepted)
Oregon margin:

NE Pacific, Oregon Margin:

- porewaters are **major source of REEs** to the ocean
- if extrapolated to global ocean, it can account for missing Nd flux
- affects bottom water εNd (>2000 m upwards)
- magnitude of the benthic flux is a result of the development of reactive authigenic phases during diagenesis & depends on circulation strength

Abbott et al., GCA (2015); Abbott et al., Geology (2015); Abbot et al., EPSL (2016)
2. Challenges & Open Questions - Benthic Flux

North Pacific:

- deep water ϵ_{Nd} = function of exposure time to benthic flux (i.e., circulation speed)
- downcore ϵ_{Nd} reflects circulation rate (more positive ϵ_{Nd} = slow circulation)
- no correlation of deep water [Nd] with age

Du et al., Nat.Geol. (2018);
Compilation (Pahnke); Gebbie & Huybers (2012)
Benthic flux?

Pacific >2000 m:

- εNd correlates with deep water age & phosphate
- [Nd] does not correlate with deep water age

\Rightarrow no indication for benthic flux on a global scale

Compilation (Pahnke) Gebbie & Huybers (2012)
Local Nd input and εNd modification from benthic nepheloid layer

West Atlantic

![Map of the North Atlantic Ocean indicating the location of seawater profiles and surface samples from this study and the literature.](image)

Fig. 1. Map of the North Atlantic Ocean indicating the location of seawater profiles (black dots with numbers) and surface samples (black triangles) from this study and the literature (white and grey symbols). White triangles with letters refer to stations from the literature, the data from which are used for comparison in this study. (a) Signature station 5 (Lacan and Jeandel, 2005a); (b) Hudson 83-036 LC (Piepgras and Wasserburg, 1987); (c) Thalahassa station 15 (Rickli et al., 2009); (d) Hudson 83-036 station 11 (Piepgras and Wasserburg, 1987); (e) Signature station 6 (Lacan and Jeandel, 2005a); (f) OCE 63 station 3 (Piepgras and Wasserburg, 1987); (g) TTO/TAS station 63 (Piepgras and Wasserburg, 1987); (h) NE Atl. E3 O (Tachikawa et al., 1999).

Light grey dots represent literature data where at least three depths were sampled for Nd isotopic compositions, and the white dots mark stations with less than three published depths results. Pink (thicker) arrows represent schematically the spreading of Labrador Sea Water (LSW). Blue (thinner) arrows symbolise overflow of waters from the Greenland and Norwegian Seas (DSOW: Denmark Strait Overflow Water; ISOW: Iceland–Scotland Overflow Water). Yellow (thicker) arrows represent the spreading of North Atlantic Deep Water (NADW) once exported from the subpolar gyre. Orange (thinner) arrows mark the northward flow of southern-derived water masses (w-LDW and e-LDW: western and eastern Lower Deep Water, respectively). Dotted grey lines represent deep recirculation cells. DS: Denmark Strait; I-F ridge: Iceland Faroe ridge; F-B channel: Faroe Bank channel; CGFZ: Charlie Gibbs Fracture Zone. Stippled black line marks the path of the section view shown in Fig. 2. The map was created using ODV software, available at http://odv.awi.de/ (Schlitzer, 2012).

2. Challenges & Open Questions - Benthic Flux

Lambelet et al., GCA (2016); Zheng et al., EPSL (2016); Hathorne et al., Marine Chem. (2015)
Benthic flux?

Global GEOTRACES Observations:

- no indication for benthic REE flux in Arctic and Southern Ocean?

Basak et al., EPSL (2015);
Paffrath & Pahnke, unpubl. data
2. Challenges & Open Questions - Benthic Flux

Global GEOTRACES Observations:

HREE/LREE and MREE/MREE*

- pore water: highly variable (e.g., Abbot et al., 2015; Du et al., 2016)
- bottom water: much less variable

![Graph showing Benthic flux and Global GEOTRACES Observations: HREE/LREE and MREE/MREE*](image)

Basak et al., EPSL (2015); Behrens et al., EPSL (2018)
Southern Ocean-wide consistency of deep water εNd changes:

![Graph showing Southern Ocean-wide consistency of deep water εNd changes.](image1)

Abrupt εNd changes (corals):

![Graph showing abrupt εNd changes in corals.](image2)
3. Summary & Perspectives

eNd versus Pa/Th - Are we closer to understanding the differences?

- if eNd reflects deep water source and Th/Pa circulation speed, the records are not at odds
- lack of change from LGM through H1 calls benthic flux hypothesis into question

- Reichs isotopes, where ε_{Nd} reflects deep water source and Th/Pa circulation speed, the records are not at odds
- Lack of change from LGM through H1 calls benthic flux hypothesis into question

- Fig. 6: Distribution of advection budg and flow of ocean at the warmer TEI (2004)
- TEIs in the warmer ocean are discussed
3. Summary & Perspectives

How to precede?

- Water mass circulation and mixing play important role in εNd distributions

 εNd will remain useful (qualitative) tracer for water mass provenance and circulation pathways

 non-conservative processes are increasingly used to explain inconsistencies/strong anomalies in paleo-records

- How can non-conservative processes be identified / quantified in paleo applications?

- Is benthic flux a global phenomenon and the main source of Nd to the ocean?

- Should εNd rather be used as a dynamic tracer (circulation speed/deep water exposure time to benthic flux)?

What is needed?

- Improved global coverage of observations in the **water column** (e.g., in Pacific, Southern Ocean) and **sediment**

- Observations at **interfaces** (land/margin-ocean (rivers, SGD), seafloor-seawater)

- Direct **benthic flux measurements** (benthic chambers)

- Modeling studies

Thank you!