The general thesis of this talk is

synthesizing paleo- and modern
oceanographic findings w.r.t.
variability of nitrate consumption

in High Nutrient-Low Chlorophyll
regions

(nitrate rich, iron-limited waters)
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the marine biological pump A

on seasonal to ice age timescales



add iron and...
INCrease nitrate consumption
strengthen biological pump

[Dugdale & Goering, 1967; Martin, 1990; Coale et al. 1996; others]



nitrate consumption = “new” production

-> biological carbon pump efficiency

[Dugdale and Goering 1967; Eppley and Peterson 1979]




nitrate consumption = “new” production

-> biological carbon pump efficiency

[Dugdale and Goering 1967; Eppley and Peterson 1979]




how to ge’r nitrate consumption vc:mc:lr)lll’ry2

1. change iron / nitrate of source
water (Altabet 2001)

2. change dust supply (John Martin 1990)



the “lron Hypothesis”

A
Iron

carbon

2. change dust supply (John Martin 1990)



cracks in the “lron Hypothesis”

no / little influence on glacial
equatorial Pacific nitrate

consumption (Rafter and Charles 2012;
Costa et al. 2016; Winckler et al. 2016)

Increased Southern Ocean nitrate

consumption without increased dust
(Studer 2015)

2. change dust supply (John Martin 1990)
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original view new view

A
iron

carbon

Rafter, Sigman, & Mackey (2017)



nitrate consumption and biological carbon
pump cannot be explained by
external supply of iron

Rafter, Sigman, & Mackey (2017)
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guantify nitrate consumption

1. nitrate isotopes = source water [NO;]

2. Fel/N requirements - “potential consumption”
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FIRST MYSTERY: why is there a
relationship between consumption and upwelling?

nitrate consumption [umol kg”']
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“potential” nitrate consuMPioN ater etal. 2017

(uses constraints from Twining 2011; Kaupp 2011; Gordon 1997)
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SECOND MYSTERY: why observed nitrate consumption
so much higher than predicted nitrate consumption ¢
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Sensitivity tests cannot replicate
observed range of nitrate consumption

(Rafter et al. 2017)
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these only consider diatom Fe

requirements (<10% of biomass)
(Taylor et al. 2011)
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these only consider diatom Fe

requirements (<10% of biomass)
(Taylor et al. 2011)
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Quantify both observed and

“potential” nitrate consumption
(based on iron supply)
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where is the “missing” iron?

riding the “Ferrous Wheel”




e observed in equatorial and
subantarctic Pacific (Hutchins
et al. 1997; Strzepek 2005)

» large part of surface ocean
Iron budgets (strzepek 2005; Boyd
2005)

e suspected to fuel diatom

blooms (Southern Ocean: Bowie
2001)

| never directly linked to
nitrate consumption, new
primary production,

& biological pump




put these ideas into a box model
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N and Fe recycling
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eDynamic growth rates
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limitation)
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eFit to observed biomass




put these ideas into a box model
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based on numerical models (Rafter et al. 2017)



original view

A
iron

carbon
ADDED nutrients drive

biological pump efficiency

cannot
explain
nitrate
consumption
IN major
HNLC
regions



new view

iron
carbon
new and recycled nutrients
determine efficiency



SECOND MYSTERY: why observed
higher than predicted nitrate consumption 2

iIron must be recycled / preferentially
retained In upper ocean

FIRST MYSTERY: relationship between
consumption and upwelling?




model upwelling zone

S Stronger Upwelling
T euphotic = shorter residence time
DEPTH Zone
_L = less Iron recycling

source water

Up:lvzcl'lli(ng U;&Zﬂﬁ,g = less nitrate consumption
1 A1 A ] | links ocean
A L= | physics with
biology
1 and
i chemistry




implications for paleoceanography
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First insight: equatorial Pacific
upwelling/nitrate consumption linked to
seasonal heating (as | suspected)
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insolation (W/m?)
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to same ocean physics as ENSO,
seasonal heating, not GHG
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SUMMARY

Iron-recycling drives most
primary production
In iron-limited waters

upwelling rate (residence time) modulates

extent of iron recycling and therefore
nitrate consumption

helps explain several mysteries In
modern biogeochemistry &
paleoceanography
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