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Objectives of this session 
1.  Discuss existing observational approaches to 

measure the concentration and size distribution of 
particles in the ocean 

–  Large volume in-situ filtration for collection of size 
fractionated particles (>53um; 1-53um) 

2.  The spatial variations in particle concentration and 
size distribution which these instruments have so 
far documented 

–  Compilation of major particle composition (POC, opal, 
CaCO3) from the global MULVFS dataset 
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Motivation for size-fractionation: Particle dynamics 
(via geochemistry, USGT NAZT stn 11) 
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Part. Phosphorus Part. Barium 

•  Production of 1-51um P by 
photosynthesis near 
surface 

•  >51um P near surface from 
aggregate formation 

•  µm-sized barite particles 
formed in micro-
environments of aggregates 
near surface à max in 
>51um Ba near surface 

•  As organic matter 
remineralizes (gradient in 
P), aggregates fragment 
and release barite into 
small size fraction 

•  Maximum in 
remineralization in P 
coincides with max in 
1-51um Ba 

Suspended 
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fraction 

Sinking
(>51um) size 

fraction 

Unpublished US GT 
NAZT data from Dan 

Ohnemus—see his 
poster for more!	
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Why study major particle composition for 
GEOTRACES? 



Might particle composition be important for other 
trace metals? 
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A Global Compilation of size-fractionated 
POC, CaCO3, and Opal Concentration 
Profiles in the Mesopelagic 
•  Particle samples collected using the Multiple Unit Large 

Volume in-situ Filtration System (MULVFS) between 1973 
and 2005 by Jim Bishop  

•  Size fractionated particles (<1µm, 1-53µm, >53µm) 
•  >53µm size fraction = sinking size class 

–  POC Flux = particle sinking speed x >53µm POC concentration	

•  1-53µm size fraction = suspended size class 
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•  Dataset benefits: 
–  62 open ocean profiles with 

wide geographic coverage in 
many regimes 

–  High depth resolution in the 
mesopelagic (up to 12 depths 
in upper 1000m) 

–  POC, CaCO3, opal 
measurements on all > 53µm 
particles, and many 1-53µm 
particles 

–  Consistency! All samples 
collected and processed by a 
single PI (Jim Bishop) 
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The >53um (“sinking”) dataset 

10 2 100 102

0

200

400

600

800

1000

>53 µm [POC] (µg/kg)

D
ep

th
 (m

)

POC CaCO3 Opal (bSi) 
The 1-53um (“suspended”) dataset 
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•  Variability is smaller in the 1-53um size fraction, especially for POC  
•  The 1-53um size fraction has higher concentrations of all three 

components 1-53um CaCO3 and opal data 
compilation not yet published; rest 
available at Lam et al. 2011 GBC, 

v25, GB3009	

	




>53 µm particle composition at 800 1000m
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>53 µm particle composition at 400 600m
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>53 µm particle composition in upper 80m
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>53um particles become relatively 
more CaCO3 and opal rich with 
depth as POC attenuates faster 

with depth 

Relative composition of >53um 
surface particles 
Dominated by POM 
fOpal ranges from from 0-0.8 
fCaCO3 ranges from 0-0.45  

Data available at Lam et al. 
2011 GBC, v25, GB3009	


	




1 53 µm particle composition at 800 1000m
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1 53 µm particle composition at 400 600m
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1 53 µm particle composition in upper 80m
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1-53um particles become relatively 
more opal rich with depth  

1-53um CaCO3 and opal 
data compilation not yet 

published; rest available at 
Lam et al. 2011 GBC	




>53 µm particle composition in upper 80m
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>53 µm particle composition at 400 600m
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>53 µm particle composition at 800 1000m

0
0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5
0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1

1

1
fopal

fP
OM

fCaCO3
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1-53um particles change with depth more than 
>53um particles 



Representing and comparing the variability in 
POC profiles 

•  All >53µm and 1-53µm POC profiles 
were fit with a power law function 
(55/62 well fit) 

•  z0 is the export depth  
•  P0 is the fitted POC concentration at z0	


–  “Strength of shallow pump”	

•  b is the power law exponent 

–  “attenuation of POC” 

•  P0+500 is the fitted POC concentration 
500m below z0 

–  “Strength of deep pump” 
•  TE is the Transfer Efficiency between 

P0 and P0+500, another measure of 
attenuation 
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P0+500 =0.3 ug/kg	


b=1.2	

TE=7%	


P0=4.3 ug/kg	
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Example fits to the sinking (>53 um) and 
suspended (1-53um) size fractions 

P0+500 =0.3 ug/kg	


b=1.2	

TE=7%	


P0=4.3 ug/kg	


Sinking (>53um)  particles Suspended (1-53um) particles 

(Subarctic Pacific) 
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Suspended POC has a lower attenuation with depth 
than sinking POC 

•  Weak correlation between 
the attenuation (“b value”) of 
the sinking (>53um) and 
suspended (1-53um) size 
fractions (R2=0.18) 

•  Attenuation of POC in the 
sinking size fraction exhibits 
a greater range and is almost 
always greater than the 
suspended size fraction 
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Lam et al., unpublished.  
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POC at the base of the euphotic zone (P0) is usually 
but not always higher in the suspended size fraction 

•  P0 of the sinking size 
fraction is typically ~30% of 
the suspended size fraction 

•  The exception is in blooms, 
where >53um particles can 
equal or even exceed the 
suspended size fraction 
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Lam et al., unpublished.  



POC 500m below the base of the euphotic zone 
(P0+500) is always higher in suspended size fraction 

•  Even weaker correlation 
between P0+500 of the 
sinking (>53um) and 
suspended (1-53um) size 
fractions (R2=0.1) 
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Summary (1): Particle composition in 
sinking vs. suspended size fractions 

•  The attenuation of POC is stronger in the sinking compared to the 
suspended size fraction 

•  POC concentrations at the base of the euphotic zone are usually 
higher for suspended compared to sinking size fractions 

•  POC 500m below the base of the euphotic zone (P0+500) is always 
higher in suspended size fraction 

•  The relative composition of suspended particles changes more with 
depth than sinking particles—a reflection of decreasing POC but 
almost conservative CaCO3 and opal with depth 

•  Large variability in particle composition: how will this affect 
scavenging of dissolved TEIs? 
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Making sense of the large variability in >53um 

(“sinking”) POC 
(Subarctic Pacific) 

P0+500 =0.3 ug/kg	


b=1.2	

TE=7%	


P0=4.3 ug/kg	




Sinking (>53um) POC: Higher P0 (shallow POC 
concentration) is correlated with higher b 

(attenuation) 
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Sinking (>53um) size fraction: Global P0 vs P0+500	


TE = 

Concentrations of shallow and deep >53um POC are decoupled 
Lam et al. 2011 GBC, v25, GB3009	
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The strength and efficiency of the biological 
pump are dynamic 
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•  A single station can span the entire range in pump strength and efficiency over a 
seasonal cycle 	


Lam et al. 2011 GBC, v25, GB3009	
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•  At low to moderate P0, P0 and P0+500 increase concurrently, maintaining constant 
TE  

•  The biological pump strength and efficiency are maximized at moderate P0	

•  From moderate to high P0, P0+500 decreases with increasing P0 , decreasing TE  
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The strength and efficiency of the biological 
pump are dynamic 
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Summary (2): the dynamic biological pump 

•  The biological pump is dynamic: 
–  At low to moderate P0, P0 and P0+500 increase 

concurrently, maintaining constant TE 
–  The biological pump strength and efficiency are 

maximized at moderate P0	

–  From moderate to high P0, P0+500 decreases with 

increasing P0  
•  This dynamism is visible in the global snapshot, 

but also within a region across spatial gradients 
(eg. EqPac) and across seasonal gradients (eg. 
CJGOFS line P) 

“steady state” 
communities 

“bloom” 
communities 



Conclusions 
•  Sampled particles need to be interpreted based on their 

typical residence times 
•  For >53um size fraction:  

–  This size fraction has short residence times (sinking speeds ~ 
100 m/d) and large spatial and temporal variability 

–  Sampled >53um particles are a snapshot (days) of the water 
column 

•  For 1-53um size fraction: 
–  Longer residence time (sinking speeds ~ 1 m/d) allows more 

exchange with solutes in the water column 
–  Sampled 1-53um particles can integrate over a longer time 

(weeks—many months) 
•  How to interpret the role of particles in governing the 

dissolved TEI distributions given that they are 
snapshots 


