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Explore the role of biopolymeric carriers
ﬁ (e.g., carbohydrates, proteins in EPS) for
radionuclides in the environment.

Lessons from field and lab studies using
‘correlative’ (Chemical Oceanography) leading to

Relevance for remediation, interpretation
of results from applications, e.g., historical
reconstructions, etc.
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~ Paleo-
reconstruction of
climate, ocean
mixing, nutrient
and pollutant
levels, etc.

Tracing particle-

Tracing of

different water
masses in
ocean

Tracing




Common (multiple) oxidation states of
environmental radionuclides

#A-type (hard; bind to O over N,S): U(IV\VI), Th(IV), Pa(IV,V),
Pu(lll,IV,V), Be(ll)

4B-type (intermediate to soft; bind to S,N over O): Pb(ll, IV)

#Metalloid (hard; metal and non-metal behavior): Po(-Il, I,
IV, VI), (-1, O, I, V)
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Biomolecules as carriers of radionuclides due to their
original polyfunctionality (e, H*, Me?** transport)
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Potential complications (field data

* Problem of fluid particle-solution boundary, problem of
carrier phases for radionuclides that mask their physico-
chemical properties in solution, complicates modeling.

* Problem of operationally defined procedures and
reliance on proxies that can produce paradoxical results

and correlations

* All Operational Approaches are limited by
“Environmental Heisenberg uncertainty principle”




Depth {(m) [Th] Wire Cut (m) [Aggregates]

234Th deficiencies (3(?38U-23Th)) in the water column as a measure of particle
scavenging intensity from vertical & lateral processes in surface and deep waters
(Santschi et al., 1999, Cont. Shelf Res., 19, 609).
Correspondence of Th-234 deficiency with abundance of aggregates
(Aggr~TEP~APS~EPS), but not with SPM.
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Fibrils in 1-200 nm COM from Middle Atlantic Bight, 2m and 2600m
depth, documented by Atomic Force Microscopy (AFM, horizontal
distance 10 um) Santschi et al., 1998. L&0O 43, 896

— 10pm ——» < 10 pm ——

o 25 50 25 109 0 2.5 5.0 2.5 o after staining

2m o 2600 m ™| fibril

-> Forms and shapes of colloids: pearls on necklace most common colloidal form
-> “spiderweb”; -> fibrils in surface and bottom waters, but not in mid-depth waters.

-> modern radiocarbon ages of pure fibrils (e.g.,~100% CHO)




Metal Binding (chelation) to Alginic Acid: Role of Ca?*: Egg Box Model
for Trace Metal Complexation in Acid Polysaccharides (-> “sheltering”)

Calcium poly-a-L-guluronate left-handed helix
view down axis

view along axis, showing the hydrogen bonding and calcium
binding sites.

Alginic Acid

Ca’* can be Replaced by other metals, e.g.,
Fe(I1I), Th(IV)
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Double-helix makes
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EPS from micro-organisms enhance gel-forming properties;
hydrophilic EPS are held together by Ca2*+-bridging (EDTA
‘dissolves’ them), EPS with hydrophobic moieties assemble
through hydrophobic bridges (EDTA does not ‘dissolve’ them);

gel self-assembly as a two-step reversible process:

R A
DOM Polymers Nanogels Microgel TS

AFM shows that during the first two hours following filtration, 0.2 pm-filtered seawater
contain only free polymers that can be readily imaged on mica surface. After 5-10 hr
nanogels start to appear. After 60 hr, assembly reaches equilibrium, forming
microscopic gels of ~4-5 uym that can be filtered and imaged by environmental
scanning electron microcopy (ESEM) [see review by Verdugo and Santschi, 2010].



AL Mobaeel) B Ding, Y.-X., Chin, W.-C.,

= — * Flow cytometry Verdugo, P. 2007.
— * Fluorescence Development of a fluorescence
quenching . i quenching assay to measure
the fraction of organic carbon
present in self-assembled gels
in seawater. Marine Chemistry,
° | : : : 106, 456—462.
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Fig. 3. A) Depth distribution of SAG from transects of samples collected from station ALOHA. Blank circles refer to data obtained by fluorescence
quenching. Filled circle data were measured by flow cytometry. B) Comparison and statistical analysis of the results obtained with the fluorescence

quenching method and the flow cytometry method. The line is a linear regression of R*=0.9406.
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94 CS. Hassler et al / Marine Chemistry 123 (2011) 88-98
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Hassler et al.
also showed
close
correspondence
between Fe and
Polysaccharides,
which makes Fe
. ., | more
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Hg. 4. Size distribution of metals assoclated with the EPS. MALS, UV and selected ICP-MS signals (normalized to the maximum peak height ) abtained from the aFIFFF of 500 pl of
0567 gL~ EPS produced by bacterium CAMO36.



TCHO-C/OC (%)

Log Kd [L/kg]
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2005, 2006 cruises
To GOM

Marine Chemistry 123 (2011) 111-126

Marine Chemistry

journal homepage: www. elsevier.com/locate/marchem

Controls of ?**Th removal from the oligotrophic ocean by polyuronic acids and

modification by microbial activity
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Comparative evaluation of sediment trap and Z34Th-derived POC fluxes from the
upper oligotrophic waters of the Gulf of Mexico and the subtropical northwestern
Pacific Ocean
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Importance of Prymnesiophytes in 2001 and Cyanobacteria in 2000
[Santschl et al., 2003, GRL 30, 1044], and Dlatoms in 2006

Abundance in ocean: CHO /POC ~ 0.1, APS/POC ~ 00 01, URA/POC
~0.01 (all: Santschi et al., 2003; Hung et al., 2003), Lig. /POC ~ 0.001
(Hirose, 2004), 234Th/ng ~107 - 10-12
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Different phytoplankton species appear, at times, to control acid
polysaccharide (APS) e.g., uronic acid (URA), production and ?34Th
(IV) complexation (-> autoporetic system)




SiO2 as carrier

Evidence

for role of
diatom-SiO2
From
Correlations

But: pure
Si0, is a
Weak
sorbent

-
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JGOFS Arabian Sea Process Study
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Figure 5. a) Relationship between primary production and Particulate Organic
Carbon (POC) export derived from ®Th measurements at 100 m in the Arabian
Sea. Note high ratio of POC flux to primary production in August and September.
b) Relationship between *Th export and fucoxanthin (diatom) pigments, showing
higher ratio of *Th export to fucoxanthin flux in August and September during
the latter part of the southwest monsoon.



Complexation of trace substances to Organic Templates?

+
+

e.g., silaffins
that act as
templates for
the assembly of
SiYOV(OH).—D nano-silica !
polymers in
diatom shells
+ used in paleo-

reconstructions

Figure 1:Self-assembling cationic biopolymers interact with anionic silicates to form silica
nanoparticles.

Fig. 4 Hierarchical distribution of pores in diatom frustules; Top:
Achnanthes  subsessilis (reprinted from Materials Science and
Engineering C, 25, K.S.A. Butcher er al., A luminescence study of
porous diatoms, 659, Copyright (2010), with permission from
Elsevier); Bottom: Coscinodiscus walesii (reprinted from ref. 77,
Copyright (2010), with permission from Elsevier).

-> Can organic
residues act as
binding agents of
natural
radionuclides to
diatoms (rather than
pure silica which is a
poor sorbent)?
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Fig. 5 Molecular structure of (a) silaffins and (b) LPA.
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unpublished results
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Colloids (collected from Pacific Ocean;
OC:1.50 to 33.45%)

5.0

4.9

4.8

4.7

4.6

R?=0.4108

4.5 )

4.4 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Lysine-C/OC%

Correlation of Log Kd(Be) with % Lysine-C/OC, the only one
among all the amino-acids analyzed.




Colloids (collected from Pacific Ocean ; OC:1.50 to 33.45%)

R2=0.5136

Log Kd (Po)

Kd(Th, Po) ~ fct

" s ([siderophore-
hydroxamates])

No relationships for Be, Pa
and Pb; Anderin Chia-Ying
Chuang, unpublished results
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Hydrophobic Contact Area, HCA vs. Protein/Carbohydrate Ratio (FTIR)
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Example for separating radionuclide-tagged organic matter from EPS
produced by diatom, Phaeodactylum tricornutum
Colloids: Pacific Ocean& Gulf of Mexico

Isoelectric focusing of 2'°Po labeled EPS and colloids

—@— EPS1

—@— EPS2

—v— EPS3
EPS4

—&— Colloid 9

—#— Colloid GOM

Contrary
to:

Th: ~3-4;
Pb: ~3-4;
Pa: ~5;
Be: ~ 8.5

Isoelectric point of many
amino acids and iron(ll, 1l1)
oxide (magnetite).




Future experiments:

Characterization, at molecular levels, using
Multi-dim. NMR, ESI-MS in P. Hatcher lab [Xu, C.
et al.. 2011. GCA, accepted. Xu, C. et al. 2008.
ES&T, 42(22), 8211-8217 ], similar to

a)a Pu (and Th-) and

b)b) 1291 -carrying water-extractable colloids from
soil/sediments from contaminated sites, after
IEF, UF, and/or HPLC separation and pre-
concentration



What we know:

1) concentrations of carbohydrates or uronic acids (or their ratios
to C) are good proxies for presence of strongly Th complexing
ligand;

2) presence of proteins, or protein/carbohydrate ratio, is a proxy
for strongly Po binding amino acids, and of “stickiness” or
relative hydrophobicity;

3) Siderophores (hydroxamate) are good proxies for Th- (and Po-?)
binding ligand.

What we do not know:
e molecular structure of trace radionuclide binding ligands
e Role of templeting proteins as radionuclide carriers

New Hypotheses:
silaffins, siderophores, poly-lysines, uronic acids are suitable
macromolecular carrier ligands for selected radionuclides.
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